Abstract

Abstract The best structure of multicomponent separation techniques can be obtained using optimal distillation sequencing. Because distillation sequences contribute significantly to the fixed and operational cost of the entire chemical process, developing a systematic approach for choosing the most appropriate and economic distillation sequences becomes an important field of study. Due to its high dimensional space and combinatorial nature, synthesis of the optimal conventional distillation column sequence is a tough problem in the field of process plant development and optimization. A novel method for the synthesis of an optimal conventional distillation column sequence is suggested in this study. Genetic algorithm, an evolutionary algorithm is at the heart of the proposed method. The Total Annual Cost (TAC) is the main basis used to evaluate alternative configurations. To estimate the total cost of each sequence, rigorous methods are used to design all columns in the sequence. The proposed method’s performance and that of the conventional quantitative approach are compared using the results of a five component benchmark test problem used by researchers in this field. According to the comparison results, the suggested algorithm outclasses the other methods and is more adaptable than other existing approaches.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call