Abstract

As it strongly affects the system performance in measuring 3D point coordinates, beacon positioning represents a challenging issue in large scale metrology applications based on wireless sensor networks. This paper presents a software-assisted procedure for efficient placement of ultrasonic beacons in a wireless distributed network-based system for medium–large sized object measurements. A regular grid-based strategy and a genetic algorithm-based approach to the deployment problem are presented. The resulting network configurations are compared in terms of overall costs, sensor availability and measurement precision. The genetic algorithm outperforms the regular deployment solution, optimizing the objective functions and providing additional capabilities to represent a realistic working environment. The novelty here is the approach to the “pre-processing” phase of a sensor network deployment, involving working environment constraints, system functional characteristics, measurand geometry, and measurement task definition in the three-dimensional network design.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.