Abstract

A good and robust sensor data fusion in diverse weather conditions is a quite challenging task. There are several fusion architectures in the literature, e.g. the sensor data can be fused right at the beginning (Early Fusion), or they can be first processed separately and then concatenated later (Late Fusion). In this work, different fusion architectures are compared and evaluated by means of object detection tasks, in which the goal is to recognize and localize predefined objects in a stream of data. Usually, state-of-the-art object detectors based on neural networks are highly optimized for good weather conditions, since the well-known benchmarks only consist of sensor data recorded in optimal weather conditions. Therefore, the performance of these approaches decreases enormously or even fails in adverse weather conditions. In this work, different sensor fusion architectures are compared for good and adverse weather conditions for finding the optimal fusion architecture for diverse weather situations. A new training strategy is also introduced such that the performance of the object detector is greatly enhanced in adverse weather scenarios or if a sensor fails. Furthermore, the paper responds to the question if the detection accuracy can be increased further by providing the neural network with a-priori knowledge such as the spatial calibration of the sensors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call