Abstract

In this work, we present a new concept called “transmission interval” in a hybrid overlay/underlay cognitive radio network. A transmission interval consists of a sequence of time slots during which the secondary user (SU) transmits its data using the optimal mode based on its current state. After the transmission interval ends, the SU has to choose between staying idle for a single time slot to save energy for future possible transmission, transmitting using the underlay mode without sensing to optimize the usage of the limited amount of available energy, or sensing the channel and transmitting using either overlay or underlay mode depending on the primary user (PU) state. The energy harvesting technology is also considered in the presence of multiple PUs and multiple SUs. For the SU network, a sequential decision problem is formulated using the mixed observable Markov decision process to determine the optimal sensing energy and the optimal transmission interval length that maximize the SU network throughput and minimize both the consumed energy and the interference to the PUs. Numerical results show that applying the transmission interval concept increases the SU network throughput and decreases the interference to the PUs compared to conventional models. Moreover, adding the action of underlay transmission without sensing increases the SU network throughput.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call