Abstract
In this paper, the parameter optimization problem for multi-pass turning operations is studied. A mathematical model based on the minimum production cost criterion is developed. The unwanted material is removed by one finishing pass and at least one roughing passes depending on the total depth of cut. Maximum and minimum allowable cutting speeds, feed rates and depths of cut, as well as tool life, surface roughness, cutting force and cutting power consumption are constraints of the model. Optimal values of machining parameters are found by three methods: integer programming, nonlinear programming, and genetic algorithms. An example is presented to illustrate the effectiveness of the optimization model and solution methods. The model generates lower unit production costs compared with the results from the literature and machining data handbook.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.