Abstract

The growth in the demand for electrical energy, which is driven by the constant growth of the metropolises and the expansion of the productive capacities of the industrial sector, entails the inevitable development of the electrical system to satisfy all the required demands in a convenient, efficient, and reliable manner. In this scenario, power distribution companies will continue to need to expand their electrical systems in the short and medium term to obtain the lowest investment and operating prices for the period considered in the analysis horizon. The expansion of the system can be projected statically or dynamically, which depends on the criteria that each distributor, in turn, applies in their expansion projects. Multi-criteria decision making can provide deeper analysis perspectives considering infinite possibilities for optimal network sizing and the technical, operational, quality of service, and even system reliability factors. This research proposes a multi-criteria decision technique based on the CRITIC method to determine the optimal design of an electrical distribution system. For this purpose, several design scenarios are defined with different types of electrical conductors, and the power flows are calculated in each. From these simulations, the results obtained in voltage profiles, namely active and reactive power losses, current levels, and the costs associated with the conductors used, are recorded. With the multi-criteria technique, the winning alternative is the design scenario containing the best joint solutions for the analysis variables. The proposed methodology is validated in an IEEE 34-bar test system. The Matpower tool, available through Matlab, generates power flows for each proposed design case. The results obtained in the analysis variables are generated and stored in a decision matrix of 210 alternatives. The proposed method represents a novel and powerful alternative for design proposals of distribution systems considering quality, efficiency, and cost criteria.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.