Abstract

While the complexity of trellis decoding for a given block code is essentially a function of the number of states and branches in its trellis, the decoding complexity may be often reduced by means of an appropriate sectionalization of the trellis. Notwithstanding the many examples of such sectionalizations for particular codes that appeared in the literature, no systematic method for finding the best sectionalization of a given trellis is presently known. We present a polynomial-time algorithm which produces the optimal sectionalization of a given trellis T in time O(n/sup 2/), where n is the length of the code generated by T. The algorithm is developed in a general setting of certain operations and functions defined on the set of trellises; it therefore applies to both linear and nonlinear codes, and easily accommodates a broad range of optimality criteria. The particular optimality criterion based on minimizing the total number of additions and comparisons required for maximum-likelihood trellis decoding is investigated in detail: several different methods for decoding a given trellis are discussed and compared in a number of examples. Finally, analysis of the dynamical properties of certain optimal sectionalizations is presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.