Abstract
We introduce domain decomposition methods of Schwarz waveform relaxation (WR) type for fractional diffusion-wave equations. We show that the Dirichlet transmission conditions among the subdomains lead to slow convergence. So, we construct optimal transmission conditions at the artificial interfaces and we prove that optimal Schwarz WR methods on N subdomains converge in N iterations both on infinite spatial domains and on finite spatial domains. We also propose optimal transmission conditions when the original problem is spatially discretized and we prove the same result found in the continuous case.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.