Abstract

A new optimal scheme based on curvelet transform is proposed for retinal image enhancement (RIE) using real-coded quantum genetic algorithm. Curvelet transform has better performance in representing edges than classical wavelet transform for its anisotropy and directional decomposition capabilities. For more precise reconstruction and better visualization, curvelet coefficients in corresponding subbands are modified by using a nonlinear enhancement mapping function. An automatic method is presented for selecting optimal parameter settings of the nonlinear mapping function via quantum genetic search strategy. The performance measures used in this paper provide some quantitative comparison among different RIE methods. The proposed method is tested on the DRIVE and STARE retinal databases and compared with some popular image enhancement methods. The experimental results demonstrate that proposed method can provide superior enhanced retinal image in terms of several image quantitative evaluation indexes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.