Abstract

A combined heat and power virtual power plant (CHP-VPP) can effectively control the distributed resources in an electric–thermal coupling system and solve the problem of lack of flexibility caused by large-scale renewable energy grid connection. Similar to the optimal reconfiguration of distribution network topology by operating switches, the district heating system is also equipped with tie and sectionalizing valves to realize the optimal adjustment of district heating network (DHN) topology, which provides an economical and effective method for improving the power system’s flexibility. Based on this, this paper proposes a CHP-VPP economic scheduling model considering reconfigurable DHN. Firstly, the energy flow model is introduced to reduce the computational complexity. Secondly, adaptive robust optimization solved by the column-and-constraint generation algorithm is used to settle the randomness of wind power to ensure that the results are feasible in all worst scenarios. Finally, the feasibility of the proposed model is illustrated by case studies based on an actual CHP-VPP. The results show that compared with the reference case, considering the reconfigurability of DHN in the CHP-VPP optimization scheduling process can reduce the cost by about 2.78%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call