Abstract

Future smart distribution networks will include micro-grids (MGs) that are working in the neighbourhood. Owing to the penetration of renewable energy sources with probabilistic nature as well as deviation of load, MG may be faced with an overload or surplus power. The solution of this problem is to create and control a link between neighbour MGs for power exchange management. This study proposed a new framework for the optimal scheduling of smart reconfigurable neighbouring micro-grids (NMGs). Reconfiguration by managing the connection between MGs, through the opening and closing switches, finds the optimal structure of NMGs. Connectivity between NMGs is intended in two levels. In the first level, each MG can connect to adjacent MGs and exchange power, separately and without common area connection. In the second level, NMGs through a common area and opening or closing switches that couple them to the substrate can exchange power together. The objective of the study is to minimise load shedding of NMGs that are facing with power deficiency. The final structure selection is based on two different criteria (power loss in interconnection switches and reliability) point of view. The proposed method implemented on five NMGs system and numerical results show the effectiveness of the proposed NMGs optimal scheduling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.