Abstract

Abstract Biomass to methane production systems have the potential of supplying 25% of the yearly national natural gas demand. The production systems associated with this conversion process are anaerobic digestion facilities. The optimal operation of a batch biomass digester system requires the scheduling of all batches from multiple feedstocks during a fixed time horizon. A significant characteristic of these systems is that the feedstock decays in storage before use in the digester system. The optimal batch residence times in the digester must account for the production rate as well as the decay rate of stored biomass. The availability times, biomass quantities, biogas production rates and storage decay rates must all be taken into account for maximal biogas production to be achieved during the planning horizon. This paper addresses the scheduling of both single and multiple feedstocks in a single digester system. The single feedstock batch scheduling time problem is solved by a dynamic programming algor...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.