Abstract

Mobile cloud computing has emerged as a new computing paradigm promising to extend the capabilities of resource-constrained mobile devices. In this new paradigm, mobile devices are enabled to offload computing tasks, report sensing records, and store large files on the cloud through wireless networks. Therefore, efficient data transmission has become an important issue affecting user experiences on mobile cloud. Considering the limited battery energy of mobile devices and different application requirements on transmission delay, this study presents an online control algorithm (OPERA) based on the Lyapunov optimization theory for optimally scheduling data transmission between mobile devices and cloud. The OPERA algorithm is able to make control decisions on application scheduling, interface selection and packet dropping to minimize a joint utility of network energy cost and packet dropping penalty, without requiring any statistical information of traffic arrivals and link throughputs. Rigorous analysis and extensive simulations have demonstrated its distinguished performance in terms of utility optimality, system stability and service delay.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.