Abstract

Scaling is a commonly used technique for standard eigenvalue problems to improve the sensitivity of the eigenvalues. In this paper we investigate scaling for generalized and polynomial eigenvalue problems (PEPs) of arbitrary degree. It is shown that an optimal diagonal scaling of a PEP with respect to an eigenvalue can be described by the ratio of its normwise and componentwise condition number. Furthermore, the effect of linearization on optimally scaled polynomials is investigated. We introduce a generalization of the diagonal scaling by Lemonnier and Van Dooren to PEPs that is especially effective if some information about the magnitude of the wanted eigenvalues is available and also discuss variable transformations of the type $\lambda=\alpha\mu$ for PEPs of arbitrary degree.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.