Abstract

This paper proposes a method that plans energy-optimal trajectories for multi-satellite formation reconfiguration in deep space environment. A novel co-evolutionary particle swarm optimization algorithm is stated to solve the nonlinear programming problem, so that the computational complexity of calculating the gradient information could be avoided. One swarm represents one satellite, and through communication with other swarms during the evolution, collisions between satellites can be avoided. In addition, a dynamic depth first search algorithm is proposed to solve the redundant search problem of a co-evolutionary particle swarm optimization method, with which the computation time can be shorten a lot. In order to make the actual trajectories optimal and collision-free with disturbance, a re-planning strategy is deduced for formation reconfiguration maneuver.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.