Abstract
Complex spatio-temporal systems like lakes, forests and climate systems exhibit alternative stable states. In such systems, as the threshold value of the driver is crossed, the system may experience a sudden (discontinuous) transition or smooth (continuous) transition to an undesired steady state. Theories predict that changes in the structure of the underlying spatial patterns precede such transitions. While there has been a large body of research on identifying early warning signals of critical transitions, the problem of forecasting the type of transitions (sudden versus smooth) remains an open challenge. We address this gap by developing an advanced machine learning (ML) toolkit that serves as an early warning indicator of spatio-temporal critical transitions, Spatial Early Warning Signal Network (S-EWSNet). ML models typically resemble a black box and do not allow envisioning what the model learns in discerning the labels. Here, instead of naively relying upon the deep learning model, we let the deep neural network learn the latent features characteristic of transitions via an optimal sampling strategy (OSS) of spatial patterns. The S-EWSNet is trained on data from a stochastic cellular automata model deploying the OSS, providing an early warning indicator of transitions while detecting its type in simulated and empirical samples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.