Abstract

A statistical decision rule is a mapping from data to actions induced by statistical inference on the data. We characterize these rules for data that are chosen strategically in persuasion environments. A designer wishes to persuade a decision maker (DM) to take a particular action and decides how many Bernoulli experiments about a parameter of interest the DM can obtain. After obtaining these data and estimating the parameter value, the DM chooses to take the action if the estimated value exceeds some threshold. We establish that as the threshold changes, the resulting statistical decision rules in many environments are either simple majority or reverse unanimity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.