Abstract
We introduce an incremental learning method for the optimal construction of rule-based granular systems from numerical data streams. The method is developed within a multiobjective optimization framework considering the specificity of information, model compactness, and variability and granular coverage of the data. We use $\alpha$ -level sets over Gaussian membership functions to set model granularity and operate with hyperrectangular forms of granules in nonstationary environments. The resulting rule-based systems are formed in a formal and systematic fashion. They can be useful in time series modeling, dynamic system identification, predictive analytics, and adaptive control. Precise estimates and enclosures are given by linear piecewise and inclusion functions related to optimal granular mappings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.