Abstract

To fully unleash the potentials of quantum computing, several new challenges and open problems need to be addressed. From a routing perspective, the optimal routing problem , i.e., the problem of jointly designing a routing protocol and a route metric assuring the discovery of the route providing the highest quantum communication opportunities between an arbitrary couple of quantum devices, is crucial. In this paper, the optimal routing problem is addressed for generic quantum network architectures composed by repeaters operating through single atoms in optical cavities. Specifically, we first model the entanglement generation through a stochastic framework that allows us to jointly account for the key physical-mechanisms affecting the end-to-end entanglement rate, such as decoherence time, atom–photon and photon–photon entanglement generation, entanglement swapping, and imperfect Bell-state measurement. Then, we derive the closed-form expression of the end-to-end entanglement rate for an arbitrary path and we design an efficient algorithm for entanglement rate computation. Finally, we design a routing protocol and we prove its optimality when used in conjunction with the entanglement rate as routing metric.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call