Abstract

Recently, we showed that intracerebroventricular (IC) transplantation of human umbilical cord blood (UCB)-derived mesenchymal stem cells (MSCs) significantly attenuates posthemorrhagic hydrocephalus (PHH) and brain damage after severe IVH in newborn rats. This study was performed to determine the optimal route for transplanting MSCs for severe IVH by comparing IC transplantation, intravenous (IV) transplantation, and IV transplantation plus mannitol infusion. Severe IVH was induced by injecting 100 uL of blood into each ventricle of Sprague-Dawley rats on postnatal day 4 (P4). After confirming severe IVH with brain magnetic resonance imaging (MRI) at P5, human UCB-derived MSCs were transplanted at P6 by an IC route (1×105), an IV route (5×105), or an IV route with mannitol infused. Follow-up brain MRIs and rotarod tests were performed. At P32, brain tissue samples were obtained for biochemical and histological analyses. Although more MSCs localized to the brain after IC than after IV delivery, both methods were equally effective in preventing PHH; attenuating impaired rotarod test; increasing the number of TUNEL-positive cells, inflammatory cytokines, and astrogliosis; and reducing corpus callosal thickness and myelin basic protein expression after severe IVH regardless of mannitol co-infusion. Despite the superior delivery efficacy with IC than with the IV route, both IC and IV transplantation of MSCs had equal therapeutic efficacy in protecting against severe IVH. These findings suggest that the less invasive IV route might be a good alternative for clinically unstable, very preterm infants that cannot tolerate a more invasive IC delivery of MSCs.

Highlights

  • Intraventricular hemorrhage (IVH) is a common and serious disorder in premature infants[1]

  • These results suggest that both IV and IC mesenchymal stem cells (MSCs) transplantation were effective in attenuating posthemorrhagic hydrocephalus (PHH) after severe IVH, but mannitol neither improved PHH nor enhanced protection by IV MSCs

  • We used postnatal day 4 (P4) rats, which are more immature than P7 rats, because severe IVH is more common with increasing immaturity [2]

Read more

Summary

Introduction

Intraventricular hemorrhage (IVH) is a common and serious disorder in premature infants[1]. We showed that intracerebroventricular (IC) xenotransplantation of human umbilical cord blood (UCB)-derived mesenchymal stem cells (MSCs) significantly attenuated brain damage and PHH after severe IVH in immune competent newborn rats. This neuroprotective mechanism was primarily mediated by the anti-inflammatory effects of the transplanted MSCs[9]. Overall, these findings suggest that transplanting human UCB-derived MSCs could be a novel therapy for severe IVH in preterm infants

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.