Abstract

AbstractTravel reliability is the most essential determinant for operating the transit system and improving its service level. In this study, an optimization model for the electric transit route network design problem is proposed, under the precondition that the locations of charging depots are predetermined. Objectives are to pursue maximum travel reliability and meanwhile control the total cost within a certain range. Constraints about the bus route and operation are also considered. A Reinforcement Learning Genetic Algorithm is developed to solve the proposed model. Two case studies including the classic Mandl's road network and a large road network in the context of Zhengzhou city are conducted to demonstrate the effectiveness of the proposed model and the solution algorithm. Results suggest that the proposed methodology is helpful for improving the travel reliability of the transit network with minimal cost increase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.