Abstract

The wind turbine blade is an important component for harnessing wind energy. It plays a vital role in wind turbine operation. In this work, a study was conducted to investigate the dynamic behavior of an optimal rotary wind turbine blade with a bond graph approach simulated with MATLAB/Simulink. The model is considered as a twisted Rayleigh beam which is made of several sections of the type SG6043 airfoil. This type of airfoil is suitable for low wind conditions, and each section is subjected to aerodynamic loads that are computed using the blade element momentum theory. The bond graph model was developed based on the law of conservation of mass and energy in the systems, and then the model was converted to the MATLAB/Simulink toolbox; results were validated with SG6043 airfoil data and real wind data collected from selected specific sites of Abomsa, Metehara, and Ziway areas in Ethiopia.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.