Abstract

Computational and mathematical models are a must for the in silico analysis or design of Gene Regulatory Networks (GRN)as they offer a theoretical context to deeply address biological regulation. We have proposed a framework where models of network dynamics are expressed through a class of nonlinear and temporal multiscale Ordinary Differential Equations (ODE). To find out models that disclose network structures underlying an observed or desired network behavior, and parameter values that enable the candidate models to reproduce such behavior, we follow a reasoning cycle that alternates procedures for model selection and parameter refinement. Plausible network models are first selected via qualitative simulation, and next their parameters are given quantitative values such that the ODE model solution reproduces the specified behavior. This paper gives algorithms to tackle the parameter refinement problem formulated as an optimization problem. We search, within the parameter space symbolically expressed, for the largest hypersphere whose points correspond to parameter values such that the ODE solution gives an instance of the given qualitative trajectory. Our approach overcomes the limitation of a previously proposed stochastic approach, namely computational load and very reduced scalability. Its applicability and effectiveness are demonstrated through two benchmark synthetic networks with different complexity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.