Abstract

Since any disturbances and faults may lead to significant performance degradation in practical dynamical systems, it is essential for a system to be robust to disturbances and, at the same time, sensitive to faults. For this purpose, the authors propose an optimal robust fault-detection filter for linear discrete time-varying systems. The algorithm solves linear matrix inequalities to obtain the optimal robust H∞ estimator, minimises the H∞ norm from uncertain disturbances to estimation errors and uses H− index to maximise the minimum effect of faults on the residual output of the filter. This approach is applied to the micro-electro-mechanical system-based inertial navigation system/global positioning system; and the simulation results show that the new algorithm can achieve small estimation errors and has high sensitivity to faults.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.