Abstract

This paper studies the risk minimization problem in semi-Markov decision processes with denumerable states. The criterion to be optimized is the risk probability (or risk function) that a first passage time to some target set doesn't exceed a threshold value. We first characterize such risk functions and the corresponding optimal value function, and prove that the optimal value function satisfies the optimality equation by using a successive approximation technique. Then, we present some properties of optimal policies, and further give conditions for the existence of optimal policies. In addition, a value iteration algorithm and a policy improvement method for obtaining respectively the optimal value function and optimal policies are developed. Finally, two examples are given to illustrate the value iteration procedure and essential characterization of the risk function.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.