Abstract

An optimal control problem for cancer chemotherapy is considered that includes immunological activity. In the objective a weighted average of several quantities that describe the effectiveness of treatment is minimized. These terms include (i) the number of cancer cells at the terminal time, (ii) a measure for the immunocompetent cell densities at the terminal point (included as a negative term), (iii) the overall amount of cytotoxic agents given as a measure for the side effects of treatment and (iv) a small penalty on the terminal time that limits the overall therapy horizon which is assumed to be free. This last term is essential in obtaining a well-posed problem formulation. Employing a Gompertzian growth model for the cancer cells, for various scenarios optimal controls and corresponding responses of the system are calculated. Solutions initially follow a full dose treatment, but then at one point switch to a singular regimen that only applies partial dosages. This structure is consistent with protocols that apply an initial burst to reduce the tumor volume and then maintain a small volume through lower dosages. Optimal controls end with either a prolonged period of no dose treatment or, in a small number of scenarios, this no dose interval is still followed by one more short burst of full dose treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.