Abstract
This paper considers an ambient backscatter communication network in which a full-duplex access point (FAP) simultaneously transmits downlink orthogonal frequency division multiplexing signals to its legacy user (LU) and receives uplink signals backscattered from multiple backscatter devices (BDs) in a time-division-multiple-access manner. To maximize the system throughput and ensure fairness, we aim to maximize the minimum throughput among all BDs by jointly optimizing the backscatter time and reflection coefficients of the BDs, and the FAP’s subcarrier power allocation, subject to the LU’s throughput constraint, the BDs’ harvested-energy constraints, and other practical constraints. For the case with a single BD, we obtain closed-form solutions and propose an efficient algorithm by using the Lagrange duality method. For the general case with multiple BDs, we propose an iterative algorithm by leveraging the block coordinated decent and successive convex optimization techniques. In addition, we study the throughput region which characterizes the Pareto-optimal throughput tradeoffs among all BDs. Finally, extensive simulation results show that the proposed joint design achieves significant throughput gain as compared to the benchmark schemes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.