Abstract

This paper studies optimal resource allocation in the wireless-powered communication network (WPCN), where one hybrid access point (H-AP) operating in full duplex (FD) broadcasts wireless energy to a set of distributed users in the downlink (DL) and, at the same time, receives independent information from the users via time-division multiple access in the uplink (UL). We design an efficient protocol to support simultaneous wireless energy transfer (WET) in the DL and wireless information transmission (WIT) in the UL for the proposed FD-WPCN. We jointly optimize the time allocations to the H-AP for DL WET and different users for UL WIT and the transmit power allocations over time at the H-AP to maximize the users' weighted sum rate of UL information transmission with harvested energy. We consider both the cases with perfect and imperfect self-interference cancellation (SIC) at the H-AP, for which we obtain optimal and suboptimal time and power allocation solutions, respectively. Furthermore, we consider the half-duplex (HD) WPCN as a baseline scheme and derive its optimal resource allocation solution. Simulation results show that the FD-WPCN outperforms the HD-WPCN when effective SIC can be implemented and more stringent peak power constraint is applied at the H-AP.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.