Abstract

AbstractGiven a graph on vertices with edges, each of unit resistance, how small can the average resistance between pairs of vertices be? There are two very plausible extremal constructions — graphs like a star, and graphs which are close to regular — with the transition between them occurring when the average degree is 3. However, in this paper, we show that there are significantly better constructions for a range of average degree including average degree near 3. A key idea is to link this question to a analogous question about rooted graphs — namely ‘which rooted graph minimises the average resistance to the root?’. The rooted case is much simpler to analyse that the unrooted, and the one of the main results of this paper is that the two cases are asymptotically equivalent.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.