Abstract
Applying an Intrusion Detection System (IDS) to Wireless Body Area Networks (WBANs) becomes a costly task for body sensors due to their limited resources. To solve this problem, a cloud-assisted IDS framework is proposed. We adopt a new distributed-centralized mode, where IDS agents residing in body sensors will be triggered to launch. All IDS agents are only responsible for reporting the monitored events, not intrusion decision that is processed in the cloud platform. We then employ the signaling game to construct an IDS Report Game (IDSRG) depicting interactions between a body sensor and its opponent. The pure- and mixed-strategy Bayesian Nash Equilibriums (BNEs) of the stage IDSRG are achieved, respectively. As two players interact continually, we develop the stage IDSRG into a dynamic multistage game in which the belief can be updated dynamically. Upon the current belief, the Perfect Bayesian Equilibrium (PBE) of the dynamic multistage IDSRG is attained, which helps the IDS-sensor select the optimal report strategy. We afterward design a PBE-based algorithm to make the IDS-sensor decide when to report the monitored events. Experiments show the effectiveness of the dynamic multistage IDSRG in predicting the type and optimal strategy of a malicious body sensor.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Distributed Sensor Networks
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.