Abstract
Motivated by results in Rotnitzky et al. (2000), a family of parametrizations of the location-scale skew-normal model is introduced, and it is shown that, under each member of this class, the hypothesis H0: λ = 0 is invariant, where λ is the asymmetry parameter. Using the trace of the inverse variance matrix associated to a generalized gradient as a selection index, a subclass of optimal parametrizations is identified, and it is proved that a slight variant of Azzalini’s centred parametrization is optimal. Next, via an arbitrary optimal parametrization, a simple derivation of the limit behavior of maximum likelihood estimators is given under H0, and the asymptotic distribution of the corresponding likelihood ratio statistic for this composite hypothesis is determined.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.