Abstract

Hybrid radio frequency (RF)/free space optical (FSO) systems are among the candidate enabling technologies for the next generation of wireless networks, since they benefit from both the high data rates of the FSO subsystem and the high reliability of the RF subsystem. In this paper, we focus on the problem of throughput maximization in the parallel hybrid RF/FSO relay channel. In the parallel hybrid RF/FSO relay channel, a source node sends its data to a destination node with the help of multiple relay nodes. Thereby, for a given relay, the source-relay and the relay-destination FSO links are orthogonal with respect to each other due to the narrow beam employed for FSO transmission, whereas due to the broadcast nature of the RF channel, half-duplex operation is required for the RF links if self-interference is to be avoided. Moreover, we consider the two cases where the relays are and are not equipped with buffers. For both cases, we derive the optimal relay selection policies for the RF and FSO links and the optimal time allocation policy for transmission and reception for the RF links. The proposed optimal protocols provide important insights for an optimal system design. Since the optimal buffer-aided policy introduces an unbounded delay, we also propose a suboptimal buffer-aided policy, which ensures certain target average delays. Moreover, we present distributed implementations for both the proposed optimal protocols. Simulation results demonstrate that a considerable gain can be achieved by the proposed adaptive protocols in comparison with benchmark schemes from the literature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.