Abstract

Existence theory of optimal relaxed control problem for a class of stochastic hereditary evolution equations driven by Lévy noise has been studied. We formulate the problem in the martingale sense of Stroock and Varadhan to establish existence of optimal controls. The construction of the solution is based on the classical Faedo–Galerkin approximation, the compactness method and the Jakubowski version of the Skorokhod theorem for nonmetric spaces, and certain compactness properties of the class of Young measures on Suslin metrizable control sets. As application of the abstract theory, Oldroyd and Jeffreys fluids have been studied and existence of optimal relaxed control is established. Existence and uniqueness of a strong solution and uniqueness in law for the two-dimensional Oldroyd and Jeffreys fluids are also shown.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.