Abstract

The optimal relaxation time of about 0.8090 has been proposed to balance the efficiency, stability, and accuracy at a given lattice size of numerical simulations with lattice Boltzmann methods. The optimal lattice size for a desired Reynolds number can be refined by reducing the Mach number for incompressible flows. The functioned polylogarithm polynomials are defined and used to express the lattice Boltzmann equations at different time scales and to analyze the impact of relaxation times and lattice sizes on truncation errors. Smaller truncation errors can be achieved when relaxation times are greater than 0.5 and less than 1.0. The steady-state lid-driven cavity flow was chosen to validate the code of lattice Boltzmann procedures. The applications of the optimal relaxation parameters numerically balance the stability, efficiency, and accuracy through Hartmann flow. The optimal relaxation time can also be used to select the initial lattice size for the channel flow over a square cylinder with a given Mach number.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.