Abstract

The problem of optimal H2 rejection of noisy disturbances while asymptotically rejecting constant or sinusoidal disturbances is considered. The internal model principle is used to ensure that the expected value of the output approaches zero asymptotically in the presence of persistent deterministic disturbances. Necessary conditions are given for dynamic output feedback controllers that minimize an H2 disturbance rejection cost plus an upper bound on the integral square output cost for transient performance. The necessary conditions provide expressions for the gradients of the cost with respect to each of the control gains. These expressions are then used in a quasi-Newton gradient search algorithm to find the optimal feedback gains.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call