Abstract

This article investigates the optimal control strategy problem for nonzero-sum games of the immune system based on adaptive dynamic programming (ADP). First, the main objective is approximating a Nash equilibrium between the tumor cells and the immune cell population, which is governed through chemotherapy drugs and immunoagents guided by the mathematical growth model of the tumor cells. Second, a novel intelligent nonzero-sum games-based ADP is put forward to solve the optimization control problem by reducing the growth rate of tumor cells and minimizing chemotherapy drugs and immunotherapy drugs. Meanwhile, the convergence analysis and iterative ADP algorithm are specified to prove feasibility. Finally, simulation examples are listed to account for availability and effectiveness of the research methodology.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.