Abstract
In this paper, we consider optimal low-rank regularized inverse matrix approximations and their applications to inverse problems. We give an explicit solution to a generalized rank-constrained regularized inverse approximation problem, where the key novelties are that we allow for updates to existing approximations and we allow for incorporation of additional probabilistic information. Since computing optimal regularized inverse matrices under rank constraints can be challenging, especially for problems where matrices are large and sparse or are only accessable via function call, we propose an efficient rank-update approach that decomposes the problem into a sequence of smaller rank problems. Using examples from image deblurring, we demonstrate that more accurate solutions to inverse problems can be achieved by using rank updates to existing regularized inverse approximations. Furthermore, we show the potential benefits of using optimal regularized inverse matrix updates for solving perturbed tomographic reconstruction problems.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.