Abstract
This paper is concerned with optimal approximation of a given Dirac mixture density on the S2 manifold, i.e., a set of weighted samples located on the unit sphere, by an equally weighted Dirac mixture with a reduced number of components. The sample locations of the approximating density are calculated by minimizing a smooth global distance measure, a generalization of the well-known Cramér-von Mises Distance. First, the Localized Cumulative Distribution (LCD) together with the von Mises–Fisher kernel provides a continuous characterization of Dirac mixtures on the S2 manifold. Second, the L2 norm of the difference of two LCDs is a unique and symmetric distance between the corresponding Dirac mixtures. Thereby we integrate over all possible kernel sizes instead of choosing one specific kernel size. The resulting approximation method facilitates various efficient nonlinear sample-based state estimation methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.