Abstract

This paper presents a new methodology for the optimal redesign of water quality monitoring networks in coastal aquifers. The GALDIT index is used to evaluate the extent and magnitude of seawater intrusion (SWI) in coastal aquifers. The weights of the GALDIT parameters are optimized using the genetic algorithm (GA). A SEAWAT-based simulation model, a spatiotemporal Kriging interpolation technique, and an artificial neural network surrogate model are then implemented to simulate total dissolved solids (TDS) concentration in coastal aquifers. To obtain more precise estimations, an ensemble meta-model is developed using the Dempster-Shafer's belief function theory (D-ST) to combine the results obtained from the three individual simulation models. The combined meta-model is then used for calculating more precise TDS concentration. Some plausible scenarios are defined for variation of water elevation and water salinity at the coastline to incorporate uncertainty through the concept of value of information (VOI). Finally, the potential wells with the highest values of information are taken into consideration to redesign coastal groundwater quality monitoring network under uncertainty. The performance of the proposed methodology is evaluated by applying it to the Qom-Kahak aquifer, north-central Iran, which is threatened by SWI. At first, the individual and ensemble simulation models are developed and validated. Then, several scenarios are defined regarding the plausible changes in TDS concentration and water level at the coastline. In the next step, the scenarios, the GALDIT-GA vulnerability map, and the VOI concept are used for redesigning the existing monitoring network. The results illustrate that the revised groundwater quality monitoring network containing 10 new sampling locations outperforms the existing one based on the VOI criterion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.