Abstract

The collection and echelon utilization of used batteries (UBs) retired from energy vehicles (EVs) has received great attention in theory and practice. However, there has been no clear formulation of the optimal recovery model or assessment of how the uncertain residual capacity of UBs affects collection and remanufacturing strategies. This study characterizes the uncertain residual capacity based on the battery capacity level required for remanufacturing, and first formulates two base models of supplier recovery and manufacturer recovery in a supplier-dominated closed-loop supply chain (CLSC). Our results show that the impact of uncertain residual capacity on the operational decisions and economic performance of the CLSC is related to the recovery model, remanufacturing strategy, maximal unit remanufacturing cost of UBs, and the substitution degree of low-speed EVs for regular EVs. Compared with the supplier-recovery model, the manufacturer-recovery model brings a higher profit to the EV manufacturer and CLSC when no or partial UBs are remanufactured, but a lower profit for the battery supplier, and places a greater burden on the environment. Furthermore, we extend the base models to the manufacturer-dominated CLSC and a CLSC with two competing suppliers to investigate the rationality of the above results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call