Abstract
An optimal reconfiguration control scheme based on control allocation (CA) is proposed to stabilize the yaw dynamics of the tractor‐semitrailer vehicle. The proposed control scheme is a two‐level structure consisting of an upper level of sliding mode yaw moment controller (SMYC) and a lower optimal brake force distributor (BFD). The upper SMYC is designed to follow the tractor yaw rate and the combination of the hitch angle and trailer slip angle and outputs the corrective yaw moment, respectively, for the tractor and the trailer. The optimal brake force allocation and reconfigurable control problem is transformed to a problem of error minimization and control minimization combination formulated by constrained weighted least squares (CWLS) optimization and further solved with active set (AS) algorithm. Simulation results reveal that the CA technique‐based optimal reconfigurable control is rather effective for the tractor‐semitrailer vehicle to enhance the yaw stability performance and the reliability in case of actuator failure thanks to the multiple‐axle structure enriching the alternatives of possible actuator combinations in CA optimization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.