Abstract
Linear quadratic optimal regulator in multi-input setting exhibits several properties that are useful in adaptive control of structures. Its ability to preserve guaranteed stability margins in each input channel is particularly attractive to switch actuators, develop management schemes and meet the response tailoring objectives in the structure. A stabilizing controller for each of these actuators is already known from the regulator design. Since these controllers are infinite gain margin controllers, it is shown that they are also linear quadratic optimal with respect to a scalar multiplying the controller corresponding to the actuator. In this paper, these optimal controllers in a reconfigurable architecture are considered. Dynamic response tailoring by each actuator combination is investigated. Further, while switching actuators, parametric robustness of the reconfigurable systems is assessed with respect to the perturbed eigenvalues in a circular region. An oscillator model and a cantilever beam are used to illustrate the dynamic response tailoring in an adaptive structure using conventional and reconfigurable control principles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Structural Stability and Dynamics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.