Abstract
A realization of a metric d on a finite set X is a weighted graph (G,w) whose vertex set contains X such that the shortest-path distance between elements of X considered as vertices in G is equal to d. Such a realization (G,w) is called optimal if the sum of its edge weights is minimal over all such realizations. Optimal realizations always exist, although it is NP-hard to compute them in general, and they have applications in areas such as phylogenetics, electrical networks and internet tomography. A. Dress (1984) showed that the optimal realizations of a metric d are closely related to a certain polytopal complex that can be canonically associated to d called its tight-span. Moreover, he conjectured that the (weighted) graph consisting of the zero- and one-dimensional faces of the tight-span of d must always contain an optimal realization as a homeomorphic subgraph. In this paper, we prove that this conjecture does indeed hold for a certain class of metrics, namely the class of totally-decomposable metrics whose tight-span has dimension two. As a corollary, it follows that the minimum Manhattan network problem is a special case of finding optimal realizations of two-dimensional totally-decomposable metrics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.