Abstract
This paper presents a convex optimization approach to study optimal realizations of passive electromagnetic structures. The optimization approach complements recently developed theory and techniques to derive sum rules and physical limitations for passive systems operating over a given bandwidth. The sum rules are based solely on the analytical properties of the corresponding Herglotz functions. However, the application of sum rules is limited by certain assumptions regarding the low- and high-frequency asymptotic behavior of the system, and the sum rules typically do not give much information towards an optimal realization of the passive system at hand. In contrast, the corresponding convex optimization problem is formulated to explicitly generate a Herglotz function as an optimal realization of the passive structure. The procedure does not require any additional assumptions on the low- and high frequency asymptotic behavior, but additional convex constraints can straightforwardly be incorporated in the formulation. Typical application areas are concerned with antennas, periodic structures, material responses, scattering, absorption, reflection, and extinction. In this paper, we consider three concrete examples regarding dispersion compensation for waveguides, passive metamaterials and passive radar absorbers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.