Abstract

We propose a lattice-based scheme for secret key generation from Gaussian sources in the presence of an eaves-dropper, and show that it achieves the strong secret key capacity in the case of degraded source models, as well as the optimal secret key / public communication rate trade-off. The key ingredients of our scheme are the use of the modulo lattice operation to extract the channel intrinsic randomness, based on the notion of flatness factor, together with a randomized lattice quantization technique to quantize the continuous source. Compared to previous works, we introduce two new notions of flatness factor based on <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">L</i> <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">1</sup> distance and KL divergence, respectively, which might be of independent interest. We prove the existence of secrecy-good lattices under <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">L</i> <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">1</sup> distance and KL divergence, whose <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">L</i> <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">1</sup> and KL flatness factors vanish for volume-to-noise ratios up to 2πe. This improves upon the volume-to-noise ratio threshold 2π of the <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">L</i> <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">∞</sup> flatness factor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call