Abstract

Ranked set sampling (RSS) is a sample selection technique that makes use of expert knowledge to rank sample units before measuring them. Even though rankings are not always perfect, RSS is useful in situations where obtaining measurements is costly, difficult, or destructive. Research in this area has tended to focus on the case where all set sizes are equal. This article represents a departure from that setting because we encounter different set sizes within a single sample. More specifically, we propose an alternative estimator for the median of a symmetric distribution using medians of ranked set samples of various set sizes from such a distribution. This estimator is seen to be robust over a wide class of symmetric distributions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.