Abstract

In this paper, we consider the infinite-dimensional integration problem on weighted reproducing kernel Hilbert spaces with norms induced by an underlying function space decomposition of ANOVA-type. The weights model the relative importance of different groups of variables. We present new randomized multilevel algorithms to tackle this integration problem and prove upper bounds for their randomized error. Furthermore, we provide in this setting the first non-trivial lower error bounds for general randomized algorithms, which, in particular, may be adaptive or non-linear. These lower bounds show that our multilevel algorithms are optimal. Our analysis refines and extends the analysis provided in [F. J. Hickernell, T. M\"uller-Gronbach, B. Niu, K. Ritter, J. Complexity 26 (2010), 229-254], and our error bounds improve substantially on the error bounds presented there. As an illustrative example, we discuss the unanchored Sobolev space and employ randomized quasi-Monte Carlo multilevel algorithms based on scrambled polynomial lattice rules.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call