Abstract
The internet is surrounded by uncertain information which necessitates the usage of natural language processing and soft computing techniques to extract the relevant documents. The relevant results are retrieved using the query expansion technique which is mainly formulated using the machine learning or deep learning concepts in the existing literature. This paper presents a hybrid group mean-based optimizer-enhanced chimp optimization (GMBO-ECO) algorithm for pseudo-relevance-based query expansion, whereby the actual queries are expanded with their related keywords. The hybrid GMBO-ECO algorithm mainly expands the query based on the terms that have a strong interrelationship with the actual query. To generate the word embeddings, a Word2Vec paradigm is used which learns the word association from large text corpora. The useful context in the text is identified using the improved iterative deep learning framework which determines the user’s intent for the current web search. This step reduces the mismatch of the words and improves the performance of query retrieval. The weak terms are eliminated and the candidate query terms for optimal query expansion are improved via an Okapi measure and cosine similarity techniques. The proposed methodology has been compared to the state-of-the-art methods with and without a query expansion approach. Moreover, the proposed optimal query expansion technique has shown a substantial improvement in terms of a normalized discounted cumulative gain of 0.87, a mean average precision of 0.35, and a mean reciprocal rank of 0.95. The experimental results show the efficiency of the proposed methodology in retrieving the appropriate response for information retrieval. The most common applications for the proposed method are search engines.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.