Abstract

For target unitary operations which preserve the basis of measurement operators, the average fidelity of the corresponding N-qubit gate can be determined efficiently. That is, the number of required experiments is independent of system size and the classical computational resources scale only polynomially in the number N of qubits. Here we address the question of how to optimally choose the measurement basis for fidelity estimation when replacing two-level qubits by d-level qudits. We define optimality in terms of the maximal number of unitaries that preserve the measurement basis. Our definition allows us to construct the optimal measurement basis in terms of their spectra and eigenbases: the measurement operators are unitaries with d-nary spectrum and partition into Abelian groups whose eigenbases are mutually unbiased.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.