Abstract
Dense subgraph discovery (DSD) is a key primitive in graph mining that typically deals with extracting cliques and near-cliques. In this paper, we revisit the optimal quasi-clique (OQC) formulation for DSD and establish that it is NP--hard. In addition, we reveal the hitherto unknown property that OQC can be used to explore the entire spectrum of densest subgraphs of all distinct sizes by appropriately varying a single hyperparameter, thereby forging an intimate link with the classic densest-k-subgraph problem (DkS). We corroborate these findings on real-world graphs by applying the simple greedy algorithm for OQC with improved hyperparameter tuning, to quickly generate high-quality approximations of the size-density frontier. Our findings indicate that OQC not only extracts high quality (near)-cliques, but also large and loosely-connected subgraphs that exhibit well defined local community structure. The latter discovery is particularly intriguing, since OQC is not explicitly geared towards community detection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the AAAI Conference on Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.